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Abstract 

This paper presents a simulated annealing search procedure developed to 
solve job shop scheduling problems simultaneously subject to tardiness and in- 
ventory costs. The procedure is shown to significantly increase schedule quality 
compared to multiple combinations of dispatch rules and release policies, though 
at the expense of intense computational efforts. A meta-heuristic procedure is 
developed that aims at increasing the efficiency of simulated annealing by dy- 
namically inflating the costs associated with major inefficiencies in the current 
solution. Three different variations of this procedure are considered. One of 
these variations is shown to yield significant reductions in computation time, es- 
pecially on problems where search is more likely to get trapped in local minima. 
We analyze why this variation of the meta-heuristic is more effective than the 

others. 
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1    Introduction 

Over the past several years, with the advent of ever more powerful computers, stochas- 

tic procedures such as Simulated Annealing (SA) [14, 2] (and improved variations 

exploiting Tabu Search principles [9, 10]) or Genetic Algorithms (GAs) [11] have at- 

tracted the attention of a growing number of researchers. This interest has been fueled 

by both experimental and theoretical results indicating that, if properly designed and if 

given enough time, these procedures are often capable of finding near-optimal solutions 

to complex optimization problems. 

This paper presents results obtained using SA to find solutions to job shop schedul- 

ing problems where the objective is to minimize the sum of weighted tardiness and 

inventory costs (both work-in-process inventory and finished-goods inventory costs). 

The model is particularly attractive as it is compatible with the Just-In-Time objective 

of meeting customer demand in a timely yet cost-effective manner. In the scheduling 

literature, this objective function is known to be irregular, as its value may sometimes 

be decreased by delaying the execution of some operations [3]. As will be shown, this 

property needs to be taken into account in the design of SA procedures for this class 

of problems. 

By reference to simpler problems (e.g. the one machine version of this problem), 

this problem can easily be shown to be NP-hard [5, 6, 22, 23]. Surprisingly enough, 

despite the "attractiveness" of its modeling assumptions, this problem has been given 

very little attention in the literature. Two notable exceptions are the work of Tom 

Morton on resource-pricing heuristics in the context of the Sched-Star system [17] and 

our earlier work on micro-opportunistic bottleneck-centered techniques in the context 

of the Micro-Boss factory scheduling system [24]. 

The first part of this paper presents a SA procedure developed to solve job shop 

scheduling problems subject to both tardiness and inventory costs. Experimental re- 

sults are presented comparing the performance of our procedure with that of several 

other scheduling heuristics. The results corroborate earlier studies performed on other 

combinatorial optimization problems. They indicate that SA consistently produces 

high quality solutions, often significantly outperforming other scheduling heuristics, 

though at the expense of intensive computational efforts. In the second part of this pa- 

per, we introduce "Focused Simulated Annealing" (FSA), a meta-heuristic procedure 

that aims at improving the efficiency of SA search.  The idea behind FSA is that by 



dynamically inflating the costs associated with major inefficiencies in the existing so- 

lution, it is possible to focus the procedure and force it to get rid of these inefficiencies. 

By iteratively inflating costs in different subproblems, FSA can reduce the chances that 

the procedure gets trapped in local minima. Three variations of this meta-heuristic are 

considered that differ in the type of subproblems they rely on: job subproblems, re- 

source subproblems, or operation subproblems. Experimental results comparing these 

three variations of the meta-heuristic against the original SA procedure show that the 

job-based meta-heuristic significantly improves performance, especially on problems 

where search is particularly likely to get caught in local minima. We further analyze 

why this variation of the meta-heuristic is more effective than the others, trying to 

shed some light on why, in general, some decompositions are likely to work better than 

others for a given SA procedure. 

The balance of this paper is organized as follows. Section 2 provides a formal defi- 

nition of the job shop scheduling problem considered in this study. Section 3 presents a 

SA search procedure developed for this problem. Section 4 reports experimental results 

comparing the performance of the procedure against that of other scheduling heuris- 

tics. The concept of Focused Simulated Annealing is introduced in Section 5 and three 

variations of this meta-heuristic procedure are developed for the job shop scheduling 

problem with tardiness and inventory costs. Performance of these meta-heuristics is 

reported in Section 6. These results are further discussed and analyzed in Section 7. 

Section 8 presents some concluding remarks. 

2    The Job Shop Scheduling Problem with Tardiness and In- 
ventory Costs 

We consider a factory, in which a finite set of jobs, J = {J1J2, ••• ,jn}, has to be 

scheduled on a finite set of resources, RES = {Rlf R2, ■ ■ ■, Rm). The jobs are assumed 

to be known ahead of time and all resources are assumed to be available over the entire 

scheduling horizon. Each job ji requires performing a set of manufacturing operations 

Ol = {0[,Ol
2,---O

l
nt} and, ideally, should be completed by a specific due date, dd\, 

for delivery to a customer. Precedence constraints specify a complete order in which 

operations in each job have to be performed. By convention, we assume that operation 

0\ has to be completed before operation 0\+1 can start (i = 1,2, • • •, n\ - 1). 

Each job ji has an earliest acceptable release date, erdh before which it cannot start, 



e.g. because the raw materials or components required by this job cannot be delivered 

before that date. Each job also has a latest acceptable completion date (or deadline), 

lcdh by which it should absolutely be completed, e.g. because the customer would 

otherwise refuse delivery of the order. For each job, we assume that erdi < ddi < lcd\. 

Furthermore, we assume that these constraints are loose enough to always allow for 

the construction of a feasible schedule (i.e. we are not concerned with the detection of 

infeasible problems). 

This paper considers problems in which each operation 0\ requires a single resource 

R[ € RES and the order in which a job visits different resources varies from one 

job to another. Each resource can only process one operation at a time and is non- 

preemptable. The duration du\ of each operation 0\ is assumed to be known. 

The problem requires finding a schedule (i.e. a set of start times, st\, for all op- 

erations, 0\) that satisfies all these constraints while minimizing the sum of tardiness 

costs and inventory costs of all the jobs. 

Specifically, each job ji incurs a positive marginal tardiness cost tardi for each 

unit of time that it finishes past its due date ddi. Marginal tardiness costs generally 

correspond to tardiness penalties, interests on lost profits, loss of customer goodwill, 

etc. The total tardiness cost of job jh in a given schedule, is measured as: TARD = 

tardi • MAX(0, C\ - ddi) where C\ is the completion date of job jt. That is Ci = 

stlni + dul
ni, where 0l

ni is the last operation of j\. 

Inventory costs on the other hand can be introduced at the level of any operation 

in a job. In our model, each operation 0\ can have its own non-negative marginal 

inventory cost, in\. This is the marginal cost that is incurred for each unit of time 

that spans between the start time of this operation and either the completion date of 

the job or its due date, whichever is larger. In other words, the total inventory cost 

introduced by an operation 0\ in a given schedule is: 

INVf = in\ ■ (MAX(Chdd,) - st1^ 

Typically, the first operation in a job introduces marginal inventory costs that corre- 

spond to interests on the costs of raw materials, interests on processing costs (for that 

first operation), and marginal holding costs. Following operations introduce additional 

inventory costs such as interests on processing costs, interests on the costs of additional 

raw materials or components required by these operations, etc. Additional details on 

this model can be found in [23, 24]. 



The total cost of a schedule is: 
ni 

For reasons that will become clearer in Section 5, it is often useful to look at the 

total tardiness and inventory costs of a job as sums of tardiness and inventory costs 

introduced by each of the operations in the job. For each operation O], we can define 

a best start time (or "just-in-time" start time), bst\, where: 

, _ J ddi- du\       {% = ni) 
bSti ~ \ bsti+1 - du\   (1 < « < ni) 

Accordingly, the tardiness cost TARD1 of job jt in a given schedule, can be rewritten 

as. JJJ 

TARD1 = £ tcost\ 

where, 

tcost1; 
{ tardi ■ MAX(0, st\ - bst\) (* = 1) 

tardi • {MAX{0, st't - 6s*{) - MAX(0, st1^ - bst1^)}   (1< i < n,) 
iardx ■ {MAX(0, Ci - ddi) - MAX(0, st1^ - bst1^)}     (i = nt) 

tcost'i can be seen as the contribution of operation 0\ to the total tardiness cost of job 

31. Similarly, the total inventory cost of a job ji can be rewritten as: 

ni 

INV1 = Y,icost\ 
t=l 

where: 

rm,i      ■     4      S invl-iMAXistl + du^dd^-st'i)   (i = n,) 
INVl = zcost, = | .nvi. {sA+i _ at|) (1 < { < ni) 

and inv\ = ELi "**• Accordingly, the total cost of a schedule can also be expressed 

as: ni 

£ TARD1 + £ INV1 = E E (<cost\ + icostli) 
lej ieJ ieJ «=i 

For the sake of simplicity, the remainder of this paper further assumes that time 

is discrete, i.e. that job due dates/earliest acceptable release dates/latest acceptable 

completion dates and operation durations can only can only take integer values. 

The following section introduces a SA procedure developed for this problem. 



3    A Simulated Annealing Procedure 

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter- 

ative improvement approaches to combinatorial optimization by sometimes accepting 

transitions to lower quality solutions so as to avoid getting trapped in local minima 

[14, 2]. SA procedures have been successfully applied to a variety of combinatorial op- 

timization problems, including Traveling Salesman Problems [2], Graph Partitioning 

Problems [12], Graph Coloring Problems [13], Vehicle Routing Problems [21], Design 

of Integrated Circuits, Minimum Makespan Flow-Shop Scheduling Problems [20], Min- 

imum Makespan Job Shop Scheduling Problems [16, 26], etc. 

T = T0; 
x = x0 (e S); 
BestSol = x0;   M = cost(BestSol); 
while (T>T1)   { 

fori = l,N    { 
x' = neighbor(x); 
if (cost(x') < cost(x))    { 

if (cost(x') < M)   {BestSol = x'; M = cost(BestSol); } 

else if (randQ < exp{(cost(x) - cost(x'))/T})    x = x'; 

if (M was not modified in the above loop)    T = T * a; 

Fig. 1 Pseudo-code for a Basic SA Search Procedure. 

Figure 1 outlines the main steps of a SA search procedure designed to find a 

solution x e S that minimizes a real-valued cost function, cost(x). The procedure 

starts from an initial solution x0 and iteratively moves to other neighboring solutions, 

while remembering the best solution found so far (BestSol). Typically, the procedure 

only moves to neighboring solutions that are better than the current one. However, 

the probability of moving from a solution x to an inferior solution x' is greater than 

zero, thereby allowing the procedure to escape from local minima. randQ is a function 

that randomly draws a number from a uniform distribution on the interval [0,1]. The 



so-called temperature, T, of the procedure is a parameter controlling the probability of 

accepting a transition to a lower quality solution. It is initially set to a high value, T0, 

thereby frequently allowing such transitions. If, after N iterations, the best solution 

found by the procedure has not improved, the temperature parameter T is decremented 

by a factor a (0 < a < 1). When the temperature drops below a preset level, 2\, the 

procedure stops and the best solution it found (BestSol) is returned (not shown in the 

pseudo-code in Figure  1). 

As indicated earlier, procedures similar to the one outlined above have been suc- 

cessfully applied to other scheduling problems such as the minimum makespan job-shop 

scheduling problem 1. When dealing with regular scheduling objectives such as min- 

imum makespan, it is possible to limit search to permutations of operations on the 

same machine. For instance, in their SA procedure, Van Laarhoven et al. exploit this 

observation and restrict the neighborhood structure to permutations of consecutive 

operations on a same machine [26]. In the case of scheduling problems with irregular 

objectives, such a neighborhood structure would not be sufficient, as it does not allow 

for the insertion of idle-time in the schedule, which sometimes improves the quality of 

a solution 2. Here, two main approaches can be considered. A first approach would 

be to combine a SA procedure relying on permutation-based neighborhoods with a 

procedure that inserts idle-time optimally. As it turns out, the problem of inserting 

idle time optimally in a schedule, given completely specified sequences of operations on 

each machine, can be formulated as a Linear Programming (LP) problem and, hence, 

can be solved in polynomial time (See Appendix A for details). When considering 

the permutation of two operations, the SA procedure would first invoke an idle-time 

insertion procedure to compute the cost of the best schedule compatible with the new 

set of sequencing decisions. Based on this cost and the cost of the current solution, 

the search procedure would probabilistically determine whether or not to accept the 

transition. Nevertheless, at the present time, the idle time insertion procedures that 

the authors are aware of for the job shop scheduling problem remain too slow and 

!The makespan of a schedule is the length of the time interval that spans between the start time 
of the first released job and the end time of the last completed job. 

Scheduling problems with regular objective functions have been shown to be reducible to sequenc- 
ing problems [1]. Given fixed operation sequences on each machine, the schedule obtained by starting 
each operation as early as possible is undominated. With irregular objectives, this is no longer the 
case and it is sometimes better to delay the start of some operations. Here, we generically refer to 
the problem of deciding by how much to delay operations as the problem of "inserting idle time" in 

the schedule. 



would significantly limit the number of solutions that SA could explore in a reasonable 

amount of time 3. 

Instead, an alternative neighborhood structure was adopted that directly allows 

for idle time insertion. This structure, which is described below, lends itself to quick 

updates of the cost function. A possibly more subjective advantage has to do with the 

fact that the resulting procedure relies solely on SA and hence is not affected by the 

performance of a separate idle time insertion procedure. Specifically, the neighborhood 

function used in our implementation randomly selects among three types of modifica- 

tion operators, respectively referred to below as "RIGHT-SHIFT", "LEFT-SHIFT" 

and "EXCHANGE": 

RIGHT-SHIFT This operator randomly chooses a "right-shiftable" operation and 

increases its start time by one time unit (Figure 2-(a)). An operation is assumed to be 

"right-shiftable", if it can be shifted by one time unit without bumping into another 

operation on the same resource or violating the latest acceptable completion date of 

the job to which it belongs (Figure 2-(b)). Precedence constraints within a job are 

ignored when determining whether or not an operation can be right-shifted. Instead, 

as will be seen later, these constraint violations are taken care of by inserting artificial 

costs in the objective function. 

Resource R Resource R 

or 

Resource R 

t+1 

(a) SHIFT-RIGHT 

Resource R 

led, 

(b) not shiftable 

Fig. 2 RIGHT-SHIFT operator 
3For instance, using the CPLEX Linear Programming package on a DECstation 5000/200, inserting 

idle time optimally in a 100 operation job shop schedule takes about 1 CPU second. Taking into 
account similarities between the current schedule and the schedule obtained after permuting the order 
of two operations on the same resource, it is generally possible to reduce the time required to re- 
optimize the schedule to about 0.1 to 0.2 CPU seconds. Even under these conditions, a SA run of 
about 10 minutes would only be able to explore a few thousand solutions. 



LEFT-SHIFT This operator is the mirror image of RIGHT-SHIFT. It randomly 

picks a "left-shiftable" operation and decreases its start time by one time unit (Figure 

3-(a)). It is assumed that an operation cannot be shifted left, if it would either bump 

into an adjacent operation on the same resource (top case in Figure 3-(b)) or violate 

the earliest acceptable release date of the job to which it belongs (bottom case in Figure 

3-(b)). 

Resource R Resource R 

or 

Resource R Resource R 

t-1 

(a) SHIFT-LEFT 

erd, 

(b) not shiftable 

Fig. 3 LEFT-SHIFT operator 

EXCHANGE This operator selects a pair of consecutive operations on a resource 

and exchanges the order in which the operations are scheduled to be processed on that 

resource. Specifically, given two consecutive operations, A and B on a resource R, with 

A preceding B in the current solution, the exchange operator sets the new start time 

of B to the old start time of A and the new end time of A to the old end time of B, 

as depicted in Figure  4. 

Resource R 

Resource R 

♦ 

Fig. 4 EXCHANGE operator 

In the experiments presented in this paper, the probability of picking the EX- 

CHANGE operator was empirically set to 3/7 while the probabilities of picking a 

RIGHT- or LEFT-SHIFT operator were both set to 2/7. The initial solution x0 used 

by the SA procedure is randomly generated in such a way that no two operations use 



the same resource at the same time. As with the RIGHT- and LEFT-SHIFT opera- 

tor, precedence constraints between consecutive operations within a same job are not 

enforced in the process. Instead these constraints are enforced using artificial costs. If 

an operation 0\ overlaps with a preceding operation 0\_x (within the same job _;'/), an 

artificial cost fcost\ is introduced in the objective function: 

ni 

cost(x) = 5ZX1 (/cos*! + tcost'i + icost'i) 

where fcosti is proportional to the amount of overlap between 0\ and its predecessor 

0\_v Specifically: 

fcost[ = 0 

fcost\ = ß ■ roas(M*'-i + du\-\ ~ st\) (* > 2) 

where ß is a large positive constant. 

The next section summarizes the results of experiments comparing this basic SA 

procedure with several other scheduling heuristics. 

4    A First Set of Empirical Results 

Performance of this first SA procedure was assessed through comparative studies 

against a number of other scheduling heuristics. This section summarizes the results 

of experiments comparing the SA procedure against 39 combinations of well-regarded 

dispatch rules and release policies (including those combinations that were reported to 

perform best in the evaluation of the Sched-Star scheduling system [17]) both with and 

without idle-time optimization, using the LP formulation provided in Appendix A. 

Specifically, two types of dispatch rules were considered: 

1. A set of five priority dispatch rules that have been reported to be particularly 

good at reducing tardiness under various scheduling conditions [27]: the Weighted 

Shortest Processing Time (WSPT) rule, the Earliest Due Date (EDD) rule, the 

Slack per Remaining Processing Time (SRPT) rule, and two parametric rules, 

the Weighted Cost OVER Time (WCOVERT) rule and the Apparent Tardiness 

Cost (ATC) rule (also referred to sometimes as the Rachamadugu&Morton rule 

[18]). 



2. An exponential version of the parametric early/tardy dispatch rule recently de- 

veloped by Ow and Morton [22, 17] and referred to below as EXP-ET. This rule 

differs from the other 5 in that it can explicitly account for both tardiness and 

inventory costs. 

EXP-ET was successively run in combination with two release policies: an intrinsic 

release policy that only releases jobs when their priorities become positive, as sug- 

gested in [17], and an immediate release policy (IM-REL) that allowed each job to 

be relased immediately. The other five dispatch rules were also successively run in 

combination with two release policies: an immediate release policy and the Average 

Queue Time release policy (AQT) described in [17]. AQT is a parametric release policy 

that estimates queuing time as a multiple of the average job duration (the look-ahead 

parameter serving as the multiple). A job's release date is determined by offsetting the 

due date of the job by the sum of its total duration and its estimated queuing time. 

In their evaluation of the SCHED-STAR scheduling system, Morton et al. report that 

the combination of WCOVERT and AQT performed best after their SCHED-STAR 

system and was within 0.1% of the best schedule in 42% of the problems they studied 

and within 4% in 70% of their problems [17]. They also report that the next best 

scheduling heuristic is EXP-ET in combination with its intrinsic release policy. 

Combinations of release policies and dispatch rules with a look-ahead parameter 

were successively run with four different parameter values that had been identified as 

producing the best results. By combining these different dispatch rules, release policies 

and parameter settings a total of 39 heuristics4 was obtained. 

These 39 combinations of priority dispatch rules and release policies were run in 

two different ways: 

1. On each problem, the best of the 39 schedules produced by these combinations 

was recorded. In this case, out of the 39 combinations, 13 performed best on 

at least one of the 40 problems considered in the study. These 13 combinations 

included 5 of the 6 dispatch rules (SRPT was never best on this set of problems) 

and all 3 release policies. 

4The 39 combinations were as follows: EXP-ET and its intrinsic policy (times four parameter 
settings), EXP-ET/IM-REL (times four parameter settings), EDD/AQT (times four parameter set- 
tings), EDD/IM-REL, WSPT/AQT (times four parameter settings), WSPT/IM-REL, SRPT/AQT 
(times four parameter settings), SRPT/IM-REL, WCOVERT/IM-REL (times four parameter set- 
tings), WCOVERT/AQT (times four parameter settings), ATC/IM-REL (times four parameter set- 
tings), ATC/AQT (times four parameter settings). 

10 



2. On each problem, each of the 39 schedules obtained by these combinations was 

post-processed using an LP program to insert idle time optimally. Again, on each 

problem, the best of the 39 post-processed schedules was recorded for comparison 

against the SA procedure. In this case, out of the 39 combinations, 11 performed 

best (after post-processing) on at least one of the 40 problems considered in the 

study. These 11 combinations included 5 of the 6 dispatch rules (here, WSPT 

was never best) and all 3 release policies. 

Table 1 Characteristics of the eight problem sets 

Problem Set Number of Bottlenecks Avg. Due Date Due Date Range 

1 1 loose wide 
2 1 loose narrow 
3 1 tight wide 
4 1 tight narrow 
5 2 loose wide 
6 2 loose narrow 
7 2 tight wide 
8 2 tight narrow 

The results reported below were obtained on a suite of 40 scheduling problems 

similar to the ones described in [24]. The series consisted of eight sets of scheduling 

problems obtained by adjusting three parameters to cover a wide range of scheduling 

conditions (See Table 1): an average due date parameter (tight versus loose average 

due date), a due date range parameter (narrow versus wide range of due dates), and a 

parameter controlling the number of major bottlenecks (in this case one or two). For 

each parameter combination, a set of 5 scheduling problems was randomly generated, 

thereby resulting in a total of 40 problems (5 problems x 2 average due date values x 

2 due date ranges x 2 bottleneck configurations). Each problem involved 20 jobs and 

5 resources for a total of 100 operations. Marginal tardiness costs in these problems 

were set to be, on average, ten times larger than marginal inventory costs to model a 

situation where tardiness costs dominate but inventory costs are non-negligible5. 

The SA procedure was run 10 times on each problem. For each problem, we recorded 

both the average performance of the procedure (referred to below as SA-AVG) as well 

as the best solution it found for each problem over 10 runs (SA-BEST) . In each run, 

5Similar results have also been obtained on a set of problems where marginal tardiness costs were 
on average five times larger than marginal inventory costs. 

11 



the initial temperature, To, was set to 700, temperature T\ was 6.25 and the cooling 

rate a was 0.85. The value of ß was 1000 6. The number N of iterations in the 

inner-loop of the procedure (See Figure  1) was set to 300,000. 

25000 

4 5 

Problem Sei 

G Combination of 39 ■ Combination of 39        ■ SA-AVG (over 10 D SA-BEST(over10 
priority dispatch rules priority dispatch rules        runs) runs) 
and release policies and release policies 
(recording the best with idle time 
of 39 schedules on optimization (i.e. on 
each problem) each problem, all 39 

schedules are post- 
processed and the 
best post-processed 
schedule is recorded) 

Fig.    5: Comparison of SA and a combination of 39 dispatch rules and 

release policies with and without optimal idle time insertion. 

Figure    5 compares the schedules produced by the SA procedure with the best 
6The problems that were run typically had optimal solutions with a value ranging between 3000 

and 15000. Setting ß to 1000 was sufficient to guarantee that all precedence constraints were satisfied 
at the end of each run. 

12 



schedules obtained on each problem by the 39 combinations of dispatch rules and release 

policies both with and without idle time optimization. For instance, on Problem Set 6 

(problems with two bottleneck resources, loose average due dates and narrow due date 

ranges), (1) SA-BEST reduced schedule cost by almost 11% compared to SA-AVG, 

(2) SA-AVG reduced schedule cost by about 18% compared to the 39 combinations of 

dispatch rules and release policies with optimal idle time insertion and (3) performance 

of the 39 combinations of dispatch rules and release policies (taking the best of 39 

schedules on each problem) improves by more than 6% with optimal idle time insertion. 

Overall, Figure 5 indicates that SA-BEST consistently outperforms the combina- 

tions of dispatch rules and release policies with and without idle time insertion on all 

8 problem sets. The comparison also holds for SA-AVG with the exception of the two 

easier problem sets (Problem Set 1 and 5, i.e. problems with loose and widely spread 

due dates), where SA-AVG does slightly worse than the 39 combinations with idle time 

optimization. Notice that SA-AVG still outperforms the 39 combinations without idle 

time optimization on these two problem sets. Overall, compared against the 39 combi- 

nations of dispatch rules and release policies without idle time optimization, SA-AVG 

reduced schedule cost by close to 16% and SA-BEST by close to 28%. Even when, on 

each problem, idle time was optimally inserted in each of the 39 schedules obtained by 

the combinations of dispatch rules and release policies, SA-AVG still reduced schedule 

cost by an average of about 7% and SA-BEST by over 20%. A more detailed analysis 

indicates that these reductions in schedule cost reflect reductions in both tardiness 

and inventory costs. However, while running all 39 combinations of dispatch rules and 

release policies requires only a few CPU seconds on each problem and about 45 to 50 

CPU seconds when idle time is optimally inserted in each of the 39 schedules, a SA 

13 



run takes 3 to 5 minutes on a DECstation 5000/200 running C. 

20000 

18000 

16000 

D SA-AVG (over 
10 runs) 

■ SA-AVG with      ■ SA-BEST (over   11 SA-BEST with 
idle time                  10 runs)                  idle time 
optimization                                            optimization 
(over 10 runs)                                       (over 10 runs) 

Fig. 6 Performance of the SA procedure with and without idle time 

optimization. 

Additional experiments were also conducted to evaluate the performance of the 

SA procedure with respect to idle time optimization. Figure 6 summarizes these 

experiments, reporting both the average and best performance of the SA procedure 

over 10 runs with and without post-processing for optimal idle time insertion. The 

results clearly indicate that the schedules produced by the SA procedure are nearly 

14 



optimal with respect to idle time insertion, thereby validating the choice of the LEFT- 

and RIGHT-SHIFT operators used to define the neighborhood of the procedure. On 

average, idle time insertion improved performance of SA-BEST by a meager 0.94% 

(with a standard deviation of 0.8%) and that of SA-AVG by 1.02% (with a standard 

deviation of 0.5%). 
The results in Figure 5 and 6 generally attest to the ability of the SA procedure 

to produce high quality solutions, often significantly reducing schedule cost compared 

to other well-regarded scheduling heuristics. They also indicate that the computa- 

tional requirements of the procedure are quite large compared to these other heuristics, 

though experiments with larger problems suggest that the average complexity of our 

SA procedure only grows linearly with the size of the problem. 

Finally, we observe that the performance of the SA procedure can significantly vary 

from one run to another, as illustrated by the results in Figure 5. In our experiments, 

an average run of SA produced schedules with costs 14% higher than those of the best 

schedule obtained over 10 runs (SA-AVG vs. SA-BEST). This suggests that important 

speedups could possibly be obtained if the procedure was more consistent in producing 

high quality solutions. In the following section, a meta-heuristic procedure is presented 

that aims at reducing performance variability using artificial costs to dynamically focus 

the SA procedure on critical subproblems. 

5    Focused Simulated Annealing Search 

Figure 7 depicts 5 typical runs of the SA procedure introduced in the previous sections, 

plotting the cost of the best schedule found in each run, as the the temperature is slowly 

15 



lowered over time. 

Cost 
i I 

25000- 

20000- 

15000- 

200  100 
-i— 

50 
-1— 

25 
->-Temp. 

12.5  6.25 

Fig. 7 Solution improvement in 5 runs of SA. 

The behavior exhibited in Figure 7 is characteristic of SA search procedures: the 

largest improvements are observed at relatively high temperatures. In the case of 

our SA procedure, we observed that below T = 50 the quality of the solution never 

improved by more than a few percent. In other words, the early stage of the procedure 

is the one that determines whether or not the procedure will get trapped in a local 

minimum (e.g. See run A in Figure 7). The remainder of this section describes a 

meta-heuristic that relies on the dynamic introduction of artificial costs in the objective 

function to focus SA on critical subproblems and attempt to steer clear of local minima 

during the high temperature phase of the procedure. Below we refer to the resulting 

procedure as "Focused Simulated Annealing" (FSA) search. 

To improve the quality of an existing solution, FSA iteratively identifies major 

inefficiencies in the current solution and attempts to make these inefficiencies more 

obvious to the search procedure by artificially inflating their costs. As a result, the 

search procedure works harder on getting rid of these inefficiencies, possibly introducing 

new inefficiencies in the process. By regularly tracking sources of inefficiency in the 

existing solution and reconfiguring the cost function to eliminate these inefficiencies, 

FSA can increase the chances that the procedure finds a high quality solution. 
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T = T0; 
x = x0 (e S); 
BestSol = x0; M = cost(BestSol); 
while (r>Ti)    { 

if (r > r2) 
CritSubp = identify-high-cost-subp (x); 

else 
CritSubp = 0; 

fori = l,N    { 
x' = neighbor(x); 
if (costl (x') < costl(x))    x = x'; 
else if (randQ < exp{(cost 1 (x) - costl (x'))/T})    x = x'; 
if (cost(x') < M)    {BestSol = x'; M = cost(BestSol);} 

} 
if (M was not modified in the above loop)    T = T * a; 

} 

Fig. 8 The FSA Procedure: A meta-heuristic that continuously attempts 

to reduce major inefficiencies in the solution. 

Pseudo-code for the FSA procedure is given in Figure 8. T2 is a threshold temper- 

ature between T0 and 2\. Below T2, FSA behaves exactly as the SA search procedure 

described in Figure 1. Before reaching this temperature, the procedure uses a different 

cost function to decide whether or not to accept transitions to neighboring solutions, 

namely: 

costl(x) = cost(x) + ArtifCost(x) 

where: 

ArtifCost(x) =       J2       {k(tcost\ + icost\)} 
OJG CritSubp 

or, equivalently: 

costl (x) = Y^   E   {fcostli + tcostli + icostb+      £       {k{tcost\ + icost\)} 
leJl<i<nt OleCritSubp 

& is a parameter that controls the amount by which the costs associated with 

operations in critical subproblems are inflated. In our experiments, we found that 

setting A: to 2 and T2 to 50 generally yielded good results. Results obtained with other 

values for these parameters are provided in Appendix B. 
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Notice that inflating the costs associated with one or several subproblems is equiv- 

alent to reducing the temperature associated with the corresponding components of 

the objective function (or raising the temperature in the remainder of the problem). 

Accordingly, FSA can be viewed as a SA procedure in which transition probabilities 

are subject to different temperatures in different parts of the problem. Temperatures 

in different subproblems are regularly modified (lowered or raised) to get rid of ma- 

jor inefficiencies in one part or another of the working solution. In this regard, FSA 

is reminiscent of the Strategic Oscillation idea of developing non-monotonic cooling 

schedules [7, 21, 10]. However, while Strategic Oscillation cooling schedules proposed 

in the literature vary temperature in the entire problem, FSA emphasizes selective 

temperature variations in dynamically identified subproblems, as detailed below. 

The specific parts of the solution in which FSA attempts to eliminate inefficiencies 

are determined by the identify-high-cost-subp() function. Here several variations of 

the procedure are considered that differ in the way they decompose the problem: a 

job-based variation, a resource-based variation and an operation-based variation. 

"Critical Job" (CJ) variation This variation of FSA dynamically inflates the costs 

associated with critical jobs. Here, identify-high-cost-subp() computes the the cost of 

each job ji in the current schedule, namely, 

y^  (tcost\ + icostl) 
l<{<n; 

. The function then returns the set of all jobs whose costs are above p • CLVR , where 

avn is the average cost of a job in the current schedule and p is a constant. In the 

experiments reported below, p was empirically set to 3. Below we refer to this variation 

of the procedure as FSA(CJ). Results obtained with other values of p are also reported 

in Appendix B. 

"Bottleneck Resource" (BR) variation This variation of FSA inflates the costs 

associated with critical ("bottleneck") resources in the existing schedule. This is done 

by computing a cost for each resource Rk'- 

y^ (tcost\ + icost\) 
R\=Rk 

In this case, the highest cost resource is selected and all the operations requiring this 

resource are returned by identify-high-cost-subp(). This procedure will be referred to 
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as FSA{BR). 

"Critical Operation" (CO) variation Here, FSA focuses on critical operations 

rather than critical jobs or critical resources. The average cost of an operation in the 

current schedule, avo, is computed: 

avo = YL   Y,  (tcosi\ + icostli)/J2 ni 
ieji<i<rn leJ 

All the operations with a cost above q ■ av0 are considered critical, q is a constant. 

In the experiments reported below, q was equal to 3. We will denote this procedure 

FSA{CO). Results obtained with other values of q are also reported in Appendix B. 

6    Performance Evaluation 

To evaluate the effectiveness of FSA, all three variations of the procedure were run on a 

set of 40 scheduling problems similar to the ones described in Section 4. Each variation 

was run 10 times on each problem. Table 2 compares each of the three variations of 

the FSA procedure against the SA procedure described in Section 3. Both the average 

and best performance over 10 runs are reported. 

Table 2 Cost Reduction (%) obtained by FSA over SA 

Problem 
Set 

FSA(CJ) FSA(BR) FSA (CO) 
Avg Best Avg Best Avg Best 

1 4.5 2.0 -0.8 0.9 -0.6 -0.6 

2 6.5 5.1 4.3 2.3 3.5 4.3 

3 7.3 5.2 -1.2 -2.6 -0.9 -2.3 

4 0.4 0.2 -2.4 -2.2 -2.1 -2.2 

5 8.6 4.5 -9.4 -1.7 1.9 3.2 

6 8.0 2.4 -2.8 -4.3 2.3 4.2 

7 6.7 6.2 -25.2 -6.3 -2.4 0.4 

8 0.2 3.5 -2.7 -0.5 -2.1 0.7 

Overall 5.2 3.6 -5.0 -2.0 -0.5 0.9 

The results in Table 2 show that the dynamic introduction of artificial costs, as 

implemented in the FSA procedure, can potentially lead to significant improvements 

both in the average and best performance of the SA procedure. The results also show 

that the effectiveness of this approach depends on the type of subproblems considered 
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by the procedure. While FSA(CJ) reduced schedule cost by an average of 5.2% and 

improved the quality of the best schedule found in 10 runs by an average of 3.6%, the 

other two variations of the procedure, FSA(BR) and FSA(CO), did not fare as well. 

FSA(CO) performed approximately like the original SA procedure and FSA(BR) actu- 

ally did worse. Below, we further analyze the performance improvement obtained with 

FSA(CJ). In the following section, we attempt to explain why FSA(CO) and FSA(BR) 

did not perform as well. For now, we further analyze the performance improvements 

observed with FSA(CJ). 

Figure  9 and   10 show the cost distributions of the schedules obtained by succes- 

sively running SA and FSA(CJ) 300 times on two typical scheduling problems. 

frequency 

av=9790 

cost 
S000 7500 10000 12500 

Simple SA 

15000 

frequency 

5000     7500     10000    12500 

FSA (CJ) 

—I ►■ cost 
15000 

Fig. 9 Improvement of FSA(CJ) over the original SA procedure (Problem 

1) 

On the problem in Figure   9, the improvement obtained with FSA(CJ) is quite 

obvious: both the average and standard deviation of the cost distribution produced by 
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FSA(CJ) are lower than those of the original SA procedure. Accordingly, it appears 

that for this problem the probability of getting trapped in a local optimum has been 

greatly reduced. This in turn can translate in significant reductions in computation 

time. For instance, while the original SA procedure would require an average of 2.5 

runs to find a schedule with cost below 9000, FSA(CJ) would only require an average 

of 1.1 run, a saving of more than 50%. To find a schedule of cost below 8000, FSA(CJ) 

reduces computation time by more than 90%. 

frequency 

av=16128 

40- 

20 

10000 15000 20000 25000 
—I *• cost 
30000 

Simple SA 
frequency 

40- 

20- 

av=15772 

 13 MfciL.  1  |      iiinmi | ■i — -*■ cost 
10000    15000    20000    25000 

FSA (CJ) 

30000 

Fig. 10 Improvement of FSA(CJ) over the original SA procedure 

(Problem 2) 

On the other hand, for the problem in Figure 10, the performance improvement 

yielded by FSA(CJ) is rather modest: no significant reduction in average schedule cost 

or even in the standard deviation of the distribution. 

Looking more carefully at these two problems, we observe that, in the case of the 

problem in Figure   9, SA yields a cost distribution with two clearly separated peaks, 
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thereby suggesting that the procedure is often caught in local minima. In contrast, in 

the case of the problem analyzed in Figure 10, the cost distribution obtained using the 

original SA procedure is generally more compact. This would suggest that FSA(CJ) 

is more effective in those situations where the original procedure is more likely to get 

trapped in local optima. 

To verify this hypothesis, we measure for each problem the average reduction in 

schedule cost yielded by FSA(CJ) (compared to the original SA procedure) and the 

spread of the cost distribution obtained with the original SA procedure. This spread 

is simply measured as the standard deviation of the cost distribution obtained by SA 

divided by the mean of this distribution. The results for all 40 problems of the study 

are summarized in Figure  11. 

Improvement (%) 

20 

15- 

10 

5- 

0.05       0.1       0.15       0.2       0.25 
Deviation (sd/av) 

Fig. 11 Improvements obtained with FSA(CJ) as a function of the relative 

variation in schedule cost observed when using the original SA procedure. 

The graph clearly confirms our intuition. The most important improvements are 

observed on problems where the original SA procedure showed the least consistency, 

namely those problems where it had the highest chance of getting trapped in local min- 

ima. The Figure also indicates that FSA(CJ) rarely performs worse than the original 

SA procedure, and, when it does, the degradation in schedule quality is marginal. 
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7    Further Analysis 

If we are to apply FS A to other problems, we need to understand why some variations of 

the procedure perform better than others. There are at least two ways of approaching 

this question. One approach is to attempt to analyze the search procedure and the 

neighborhood structure it relies on and try to understand how the choice of a given type 

of subproblems influences the effectiveness of FSA on this specific class of scheduling 

problems. This approach is probably the one a scheduling expert would be tempted to 

follow. It could potentially lead to very insightful conclusions for the class of scheduling 

problems of interest in this study. However, our purpose here is different, as we are 

looking for insight that can possibly carry over to other domains. For this reason, we 

take a different approach and limit our analysis to the external behavior of the search 

procedure. 

As pointed out at the beginning of Section 5, the early phase of a SA run, where 

temperature is still high, generally determines whether the procedure gets caught in a 

local minimum or not. Different neighborhood structures for a same class of problem 

can possibly lead to different types of local minima. The nature of these local minima 

can in turn affect the effectiveness of different problem decompositions in the FSA 

procedure. In Figure 12, we analyze cost reductions in different types of subproblems 

during the lower temperature phase of the original SA procedure. Specifically, Figure 

12 considers improvements in three different types of subproblems: 

1. CJ: the set of critical jobs that would be identified by FSA(CJ) at T = 100 

2. BR: the critical ("bottleneck") resource that would be used by FSA(BR) at T = 

100 

3. CO: the set of critical operations that would be considered by FSA(CO) at T = 

100 
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Fig. 12 Changes of Cost in the Later Stage of SA 

For each of these subproblems, Figure 12 plots the average variation in cost as- 

sociated with these 3 subproblems as the temperature in the original SA procedure 

is progressively lowered. The curve labeled " Totaf plots the cost variations of the 

overall schedule as temperature decreases. The points in Figure 12 represent averages 

taken over the set of 40 problems studied in Section 6 and over 10 runs of SA on each 

problem. 

Figure 12 indicates that, when using the original SA procedure, major inefhciences 

in job schedules do not get corrected below temperature T = 100, while major ineffi- 

ciencies at the level of critical resources or critical operations are still easy to eliminate. 

This explains why FSA(CJ) is the variation that performs best: it is the one that best 

matches the weaknesses of the original SA procedure. By working hard on eliminat- 

ing inefficiencies at the level of critical jobs, FSA(CJ) reduces the chances that such 

inefficiencies remain when the procedure reaches its lower temperature phase, a phase 

when it is no longer effective at getting rid of these inefficiencies. For the same reason, 

the BR curve suggests that FSA(BR) wastes its time getting rid of inefficiencies that 

are still easy to eliminate in the lower temperature phase of the procedure, and hence 

can be expected to perform poorly, as observed in the results presented in Section 6. 
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8    Summary and Concluding Remarks 

In summary, the contribution of this work is twofold: 

1. On the scheduling front, a SA procedure has been developed to solve job shop 

scheduling problems with both tardiness and inventory costs. The procedure has 

been shown to produce high quality solutions, reducing schedule cost by 28% over 

a combination of 39 well-regarded dispatch rules and release policies (and by 20% 

when the dispatch schedules are post-processed for optimal idle time insertion), 

though at the expense of significant computational efforts. 

2. To reduce the computational requirements of this procedure, a meta-heuristic 

search procedure called Focused Simulated Annealing (FSA) search has been 

developed. This procedure aims at reducing variability in the performance of SA 

by dynamically focusing on the elimination of major inefficiencies in the solution. 

The procedure works by dynamically inflating the costs associated with critical 

subproblems and requires a decomposable objective function. 

Three variations of FSA have been developed for the job shop scheduling problem 

with tardiness and inventory costs. These variations of the procedure differ in the 

type of subproblems they rely on: job subproblems, resource subproblems, or op- 

eration subproblems. Experiments show that, with the right decomposition, FSA 

can significantly improve solution quality especially on problems where search is 

likely to get caught in local minima. Equivalently, for the same solution quality, 

FSA can greatly reduce computation time over a regular SA search. 

Our experiments also indicate that the performance of FSA critically depends 

on the selection of a good decomposition of the objective function. An analy- 

sis suggests that the most effective decompositions are those corresponding to 

subproblems whose solutions are particularly difficult to improve during the low 

temperature phase of the SA procedure. By focusing on inefficiencies at the level 

of these subproblems, FSA can greatly reduce the chance of getting trapped in 

local minima. 

As is often the case in this type of study, many design alternatives remain to be 

explored. Further work will also be required to assess the effectiveness of FSA or 

FSA-like meta-heuristics in combination with more sophisticated SA procedures, e.g. 
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procedures incorporating some aspects of Tabu Search [9, 25, 19]. Like Strategic Oscil- 

lation [7, 21, 10], FSA can be viewed as implementing a non-monotonic cooling sched- 

ule, though selectively, by focusing on dynamically identified subproblems. Strategic 

Oscillation could possibly also be exploited to control the value of ß, the parameter 

used in our procedure to penalize precedence constraint violations within a job. Other 

aspects of Tabu Search such as Target Analysis [8, 15], which, like FSA, adds a term 

to the objective function to drive the procedure towards high quality solutions, would 

also be worth comparing with and possibly incorporating in the existing procedure. 
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Appendix A:    Idle Time Insertion as a Linear Program 

The problem of optimally inserting idle in an existing job shop schedule (i.e. given 

completely defined operation sequences on each resource) can be formulated as a linear 

program, as detailed below: 

nj—1 

MIN Y,itardi ■T' + £ [inv'i • (54i - **!•)] + invlm • (du». + e<)}       (1) 

such that: 
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Ti-ti- stlni = dul
ni -ddi 1 = 1, ...,n (2) 

st\ - stli+1 < -du\ / = l,...,n     z' = l,...,n/-l    (3) 

,up(k,j) ,up(k,j+l)    <        ,up{Rk,i)      ,   _ 1 • _ 1 _ 1      (A\ 
Stlow{k,j)       Sllow(k,j+l) ^      aUlow(k,j)      K-l,...,m    J-l,...,Pfc       i     (4J 

r/ ,e/ > 0 / = l,...,n (5) 

.si^   > erdi l = l,...,n (6) 

**»!   <lcdi-du'ni / = l,...,n (7) 

where: 

• 77 is the tardiness of job j/ 

• e/ is the earliness of job ji 

• Oj^r'kfi is the j-th operation scheduled on resource Rk (in the given schedule). 

In other words, up(k,j) is the index of the job to which this opeation belongs 

and low(k,j) the index of this operation within its job 

• pk is the number of operations requiring resource Rk 

• The other notations are as defined in Section 2 

Note that, in Equation (2), when job ji is tardy, r\ — stlni + dul
ni — ddt > 0 and 

e; = 0, and, when it is early, t\ = ddi — (stlni + dul
ni) > 0 and 77 = 0. A similar 

formulation was first proposed by Fry et al. for the one-machine early/tardy problem 

[4]. While more efficient procedures are described in the literature for the one-machine 

early/tardy problem, including an O(NlogN) procedure developed by Garey et al. [6], 

it is not clear at this time how these procedures could be efficiently generalized to the 

job shop case. 

Appendix B:    Results Obtained Under Different Parameter 
Settings 

This appendix summarizes results obtained with FSA for different values of the follow- 

ing four parameters: 
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• T2: temperature above which FSA artificially inflates the costs of critical sub- 

problems. The results in Table 3 were obtained using FSA(CJ), the variation 

of FSA that performed best in our experiments. In these experiments, k = 2 and 

p = 3. 

• k: the parameter by which FSA inflates the costs of critical subproblems. The 

results in Table 4 were obtained using FSA(CJ), the variation of FSA that 

performed best in our experiments. In these experiments, T2 = 50 and p - 3. 

• p: the parameter used by FSA(CJ) to identify critical jobs. Results obtained 

with different values of this parameter are summarized in Table 5. In these 

experiments, T2 = 50 and k = 2. 

• q: the parameter used by FSA(CO) to identify critical operations. Results 

obtained with different values of this parameter are summarized in Table 6. In 

these experiments, T2 = 50 and k = 2. 

More detailed definitions of these parameters are provided in Section   5.  The tables 

below report both average and best performance of FSA over 10 runs. 

The best results are generally obtained for T2 = 50, k = 2, p = 3 and q = 3, the 

values used in the experiments reported in Section 6. 
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Table 3 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CJ) with different values of T2. Performance with 

T2 = 50 is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

T2 = 25 r2 = 50 T2 = 100 T2 = 200 T2 = 25 T2 = 50 T2 = 100 T2 = 200 

1 -2.3 0.0 -7.7 -3.5 -2.4 0.0 -1.2 -0.2 

2 -0.3 0.0 3.3 1.6 0.8 0.0 0.2 -4.1 

3 -2.3 0.0 0.5 0.0 -2.4 0.0 -0.5 1.3 

4 -3.7 0.0 -1.6 -0.9 -2.5 0.0 -0.7 0.7 

5 -1.2 0.0 0.0 0.8 -0.1 0.0 -2.6 -1.2 

6 -1.8 0.0 2.5 -0.5 -1.1 0.0 1.4 1.7 

7 -0.6 0.0 -1.2 -4.0 -3.6 0.0 -0.1 -0.4 

8 -2.1 0.0 -5.6 -6.8 -0.4 0.0 0.7 2.8 

Overall -1.8 0.0 -1.2 -1.7 -1.5 0.0 -0.4 0.1 

31 



Table 4 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CJ) with different values of k. Performance with k = 2 

is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

k = l k = 2 Jb = 3 k = i fc = l Jfe = 2 & = 3 k = A 

1 -3.8 0.0 -4.4 -0.3 1.0 0.0 0.8 0.1 

2 -0.2 0.0 -1.2 -2.0 1.3 0.0 0.0 -1.3 

3 -1.9 0.0 -2.6 3.2 -2.2 0.0 1.6 1.5 

4 -2.2 0.0 -3.4 -3.6 0.4 0.0 -2.4 -1.1 

5 -3.6 0.0 -2.8 -0.5 -1.1 0.0 -4.2 -12.1 

6 -0.3 0.0 2.5 -0.9 -1.1 0.0 -2.4 -1.8 

7 2.9 0.0 -5.2 2.1 3.2 0.0 0.1 -3.1 

8 -3.6 0.0 -2.1 -5.0 2.9 0.0 3.0 2.5 

Overall -1.6 0.0 -2.4 -0.9 0.6 0.0 -0.4 -1.9 
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Table 5 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CJ) with different values of p. Performance with p = 3 

is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

p = l p = 2 p = 3 p = 4 p=l p = 2 p = 3 p = 4 

1 -2.4 -1.6 0.0 0.3 0.6 1.8 0.0 -2.7 

2 1.1 1.6 0.0 -1.7 2.2 1.2 0.0 -4.7 

3 1.3 -1.0 0.0 -1.8 0.0 -0.6 0.0 0.9 

4 1.2 1.2 0.0 3.7 -1.7 -1.3 0.0 2.5 

5 -1.0 -4.1 0.0 -1.8 -32.1 -14.9 0.0 -0.2 

6 2.3 1.0 0.0 -2.6 2.0 1.6 0.0 -0.4 

7 -1.4 1.3 0.0 -3.1 -7.6 -2.7 0.0 0.4 

8 -3.7 -2.2 0.0 -4.0 -5.2 2.1 0.0 1.6 

Overall -0.3 -0.5 0.0 -1.4 -5.2 -1.6 0.0 -0.3 
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Table 6 Percentage performance improvement(+)/degradation(-) observed 

when running FSA(CO) with different values of q. Performance with q = 3 

is used as the reference. 

Problem 

Set 

Best Performance Average Performance 

q = l q = 2 q = 3 q = A q = l q = 2 q = 3 q = 4 

1 0.7 0.5 0.0 1.0 -0.8 0.8 0.0 -1.6 

2 -1.7 -1.2 0.0 -2.6 0.4 0.8 0.0 -0.5 

3 2.7 3.9 0.0 2.3 2.4 1.1 0.0 1.1 

4 -3.6 -3.7 0.0 -8.4 -0.2 -0.4 0.0 -3.5 

5 2.7 0.2 0.0 1.3 -17.3 -6.9 0.0 1.3 

6 -4.7 1.2 0.0 1.5 -2.4 0.9 0.0 1.8 

7 1.6 1.7 0.0 0.5 -2.8 0.1 0.0 0.8 

8 -1.0 1.5 0.0 1.8 -5.2 -1.8 0.0 1.6 

Overall -0.4 0.5 0.0 -0.3 -3.2 -0.7 0.0 0.1 
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